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The non-linear evolution of Stokes waves in deep water 

By VINCENT H. CHUT AND CHIANG C. ME1 
Parsons Laboratory for Water Rwources and Hydrodynamics 

Massachusetts Institute of Technology 

(Received 9 June 1970 and in revised form 22 October 1970) 

Based on a set of modulation equations derived in a previous paper, the non- 
linear evolution of wave envelope in deep water is studied numerically. It is 
found that the wave envelope tends to disintegrate to multiple groups of waves 
each of which approaches a stable permanent envelope representing dynamical 
equilibrium between the amplitude dispersion and the frequency dispersion. 
Qualitative agreement with the experimental measurements of Feir (1967) is also 
observed. 

1. Introduction 
In  previous papers (Chu & Mei 1970a, b )  a WKB method was used to derive 

the modulation equations of Whitham’s (1967) type for slowly varying Stokes 
waves. It was found that terms of dispersive type, neglected in Whitham’s 
theory to the same order of approximation, must be included to extend the 
validity of these equations. In  the limiting case of two-dimensional infinitely 
deep water, these equations, governing theslow modulation of thewaveamplitude 
a and the wave-number k, may be summarized as follows: 

(1.1 a, b)  

where wo = (gk)) is the first-order approximation for the wave frequency w and 
C, = g/2wo is the group velocity. In  ( l . l u ,  b) ,  (2, t )  are the stretched variables 
which are related to the natural time and space variables (X, T) by 

(2, t )  = 4x3 TI’ (1.2) 

where e is a small parameter characterizing both the wave steepness and the slow 
rate of modulation. The distinction between Whitham’s theory and ours 
lies in the expression for w; whilst the former implies the direct use of Stokes’ 
dispersion relation for a uniform wave train, 

o = w0( 1 + &e2 k2a2), (1.3) 
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we have instead the following 
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w = w0[l +s2(&k2a2+ [ ( u / w , ) ~ / ~ w , u ] ) ] .  (1.4) 

It seems desirable to give an elementary argument for the necessity of the 
additional dispersion term. To this end the classical linear example of beats is 
again the most effective. We consider the superposition of two sinusoidal waves 
of equal amplitude a, but slightly different wave-numbers ki and frequencies 
wi (i = 1,2).  The composite wave can be represented as a single wave train with 
varying wave amplitude a(x, t )  and phase @(x, t ) ,  i.e. 

(1.5) q(x, t )  = a cos @, 

(1.6a, b )  F where 

and 

U(X, t )  = 2 ~ 0  cos ( i ( k ,  - k2) x - 

@(z, t )  = i ( k l +  7~2)  = - +(wI + w2)t. 

- ~ 2 ) t ) ,  

The variation of the wave amplitude a(x, t )  is slow since 

Ak/kt,  A w / w ~  < 1 (Ak = k1- k2, Aw = ~ 1 -  0 2 ) .  

The wave-number and the wave frequency may be defined by the phase @ as, 

(1.7a, b )  

} 
k(x,  t )  = a@/& = $ ( k l +  k2) ,  

w(x, t )  = -a$h/at = +(01+w2). 

We observe that if the individual sinusoid satisfies a certain dispersion relation 
wi =f(k,), it is in general not true that w = f(k) except for non-dispersive waves 
where f is linear in k. In fact, for Ak/k<, Aw/wi < 1, the following is true 

(Ak)2 d2f 
w = f ( k )  + __ - + O{(Ak)3}.  

8 dk2 

Since (Ak)-l  represents the length scale of the envelope modulation, we arrive at  
the important conclusion that direct use of the plane wave dispersion relation 
leads to an error that is second order in the modulation rate, in accordance with 
the twice differentiation of the new term in (1.4). 

Based on Whitham’s approximation, the non-linear evolution of Stokes waves 
has been studied by Lighthill (1965, 1967) for a wave packet, and by Howe (1967, 
1968) for a steady flow past a slowly modulated wavy wall. Because of the omis- 
sion just discussed, the amplitude dispersion dominates the entire evolution 
process and hence their theories show the persistent steepening of the envelope 
and the occurrence of frequency shocks. As in long waves in shallow water, 
when distortion due to amplitude dispersion is sufficiently severe, frequency 
dispersion also becomes more effective in exerting a counteracting influence. 
Even if shocks should occur, their first occurrence should be widely different from 
what can be predicted from Whitham’s theory. In this sense Whitham’s theory is 
comparable to Airy’s while ours is to Boussiiiesq’s for shallow water waves. 

The primary purpose of this paper is to investigate the non-linear evolution 
with both kinds of dispersion for much longer range of time. Numerical methods 
are used for two types of initial states: (1) a pulse-shaped envelope corresponding 
to the problem treated theoretically by Lighthill (1965, 1967) and (2) periodic 
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modulation of a uniform wave train, aiming at  the development subsequent to the 
initial growth of instability (Benjamin & Feir 1967). In  the first case comparison 
with a sample record from Feir’s (1967) experiments is also made by accounting 
for the effect of damping semi-empirically. 

2. Reduction of governing equations 
In (1.1) the allowed total variations of a and k (or w )  are of order O(1). It is 

sufficient for present purposes to restrict further the variation of k down to 
O(s) ,  i.e. 

It then follows from definitions that 
k = E + ep, E = constant. (2.1) 

Substituting into (1.1 a, b)  we then have 

This suggests a moving frame of reference following the group velocity Cg; the 
following transformation simplifies andnon-dimensionalizes the above equations : 

(2.4) 

where G is a characteristic amplitude to be specified. Equations ( 2 . 3 ~ )  b )  then 
become : 

} 
A = a/Z, W = p/2E2ii z (wo - zj)/eijEZ, 

2’ = E 2 Z ( s - C g t ) ,  t’ = €(LZ)%Jt) 

19 K n  jj) 

aA2 a 
at’ ax 
- + , ( - & W A 2 ) = 0 ,  

These equations play the same role as the Korteweg-de Vries equation in the 
shallow water wave theory. 

If they are further linearized by letting A = 1 +€a and W = q3, we obtain, 

at. - ip,.,. = 0) pt. + *ax. +&ax.,.,. = 0. ( 2 . 6 ~ ~  b )  

Equations ( 2 . 5 ~ )  b )  will be used as the basis of our study. Before doing that, 
some detailed properties of the permanent wave solutions are needed. 

3. Permanent waves 
These solutions of course represent the special states of dynamic equilibrium 

between amplitude and frequency dispersion; their existence has been pointed 
22-2 
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out before by Benney & Newel1 (1967). Taking a/at’ = 0 and integrating once, we 
have 

(3 . la ,  b )  1 WA2 = C, = constant, 

- 4W2 + 4A2 + A,,/A = C, = constant. 

Combining and integrating again one easily obtains for E = A,, 
( E,,)2 = f ( E )  = - 8E3 + 4C2 E2 + 8C3 E - 16Cq 

= 8 ( E m a x - E )  ( E - E m i n )  (E-Eo), (3.2) 

(3.3) 

(3.4) 

y 2  = ( E m a x - E m i n ) / ( E m a x -  Eo). (3.5) 

C2 - -1E E with 1 - 2 o maxEmin,  

whence Eo < 0. Analytically, the solution is 

with the modulus 
E = E m i n  + ( E m a x  - E m i n )  cn2 {[2(Emax - Emin)Jbyz’ ) ,  

A 

A 

FIGURE 1. Permanent wave envelopes. (a) Emin + E ,  + 0. ( b )  Emin = 0, E ,  
(c) Emin = E, = 0. 

The wavelength of the envelope is 

A =  

Whilst Emax and E m i n  specify the amplitude, Eo specifies the wavelength. The 
wave-number change W follows from (3.1 a)  : 

(3.7) 
Now by letting E = E m a x  in (3.7), Wmin is obtained which yields an expression for 
Womin/W from the definition. The propagation speed of the envelope is then given 

(3.8) 

W = CJE = ( I / E )  [ - +EoEmaxEmin]*.  

by cg = ( g / Z ~ o m i n )  [I + e k m i n a m i n (  - i E o / E m a x ) f  + O(E’)]. 
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Possible variations of the envelope form are depicted in figure 1. Some impor- 
tant features in cases ( b )  and (c) need stressing. For cases (b)  and (c )  Emin = 0, 
W = 0, hence the wave-number is uniform throughout and wo = i3 = constant. 
It implies in turn that Cg = constant so that the propagation speed is independent 
of the amplitude of the envelope. At the nodal points A,&, = Emin = 0 but 
(A,.)2 = - 2EmaxEo as may be inferred from (3.2).  Hence A,, =k 0 unless Eo = 0 
and the envelope cuts the horizontal axis sharply. If in addition, E, = 0, then 
y N 1 and h -a; ( b )  reduces to (c), leading to the solitary envelope on a null 
background, i.e. 

A/Am,, = sech 2iAmax~' and W 0. (3 .9)  

4. Numerical scheme 
We employ the following explicit finite-difference scheme for (2.5a, b ) :  

(4.1 a, b)  

Periodic boundary conditions are prescribed at the period NAx',  i.e. 

(4.2a, b )  

Initial values of A and W are prescribed at  j = 0. Guidance for the criterion of 
numerical stability is suggested by the observation that the linearized version 
(2.6a, b)  is equivalent to the equation governing the vibration of an elastic 
column under axial compression (Morse 1948, p. 116): 

(4.3) at't' + get,,, 1 + T@z,'s'z's' 1 = 0, 

for which the stability parameter is known to be At'/(Ax')z (Richtmyer 1964, 
p. 185). By numerical trial and error it is found that At ' / (As ' )25  1 ensures 
stability in present computations. As a further check a solitary envelope of 
permanent form is first chosen as the initial value. With At' = 0.01, Ax' = 0.1 and 
N = 200, ( N  is sufficiently large that values at  the two spatial ends are negligible) 
the envelope is found to travel for 500At' without appreciable change of form. 
The change of peak amplitude is 0-3 yo and total energy 0.02 yo. For all computed 
cases in $5  5 , 6  energy is conserved within 0-5 yo. 

5. Evolution of a wave packet 
The main intention of this section is to compare with Lighthill's (1967) 

analysis of a similar problem. Pertinent experiments have also been performed 
by Feir (1967) which support Lighthill's prediction qualitatively only for a 
limited initial range of time. We adopt the following initial condition 

t = 0: (A(x', 0 )  = sech x'/29, 
W(X', 0 )  = 0. 
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FIGURE 2 .  Evolution of a symmetrical envelope-pulse with amplitude flatter than a 
permanent pulse (initially A = sech xr/29, W = 0 at  t = 0 ) .  Ax' = 0.075, At' = 0.005, 
N = 300. (a)  Amplitude A,  ( x x x ) :  permanent pulse. ( b )  Wave-number spread W .  
(c )  Growth rate at the centre of the group. 
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FIGURE 2 (c). For legend see facing page. 

The results are shown in figure 2. The essential features are that the maximum 
amplitude first increases and at  the same time the wave-number increases in 
front of but decreases behind the peak. After certain time, separation into groups 
becomes evident. The primary group approaches a permanent form with a 
higher peak (in this case it is practically a solitary wave since y > 0-95), while the 
wave-number within it returns to uniform. The groups are eventually separated 
by nodes where sharp peaks of W appear after which the computation cannot 
proceed. Since the rate of growth of the primary peak diminishes as the 
permanent form is approached, as shown in figure 2 (c), i t  appears that a ‘steady 
state ’ of dynamical equilibrium can be estab1ished.t The sharp wave-number 
peaks simply suggest that there is a jump of phase there. 

The sequence of events can be qualitatively discussed on the basis of (2 .5a,  b) .  
First, we display the amplitude-dispersion term - &4z)zt, and the frequency- 
dispersion term (~W2-(Az,z,/16A)z~ in figure 3. If the initial profile is flatter 
than the equilibrium (permanent) one, amplitude dispersion dominates a t  the 
beginning. It follows from (2 .5b )  that &, is of the shape as in figure 3 ( b ) ,  
leading to a similar distribution of W .  In  view of (2 .5a ) ,  - +W is the velocity of 
energy flux, hence energy is convected towards the centre, in agreement with 
Lighthill (1967). The non-uniformity of flux rate as well as the opposing influence 
of frequency dispersion are then responsible for the generation of the dimples and 
the eventual separation on two sides of the peak. Thus, while the nodes are 
gradually formed, no energy is communicated across them, leading to a final 
approach to equilibrium. 

While the sharpening of the wave-number curve (or fast change of phase) 
and the formation of nodes may not be accurately predicted here in a quantitative 

t In fact, near the time of node formation, appreciable changes occur only around the 
nodes. 
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sense due to the slow-modulation assumption, the simultaneous occurrence of the 
two has been observed in experiments (Feir 1967, figures 1, 2) and is consistent 
with the tendency towards dynamical equilibrium within the main part, of a 
group. As this tendency must be accompanied by a redistribution of waves such 
that the wavelength becomes uniform, two given wave crests somewhat away 
from, and on the opposite sides of, a node cannot in general be perfectly in phase 
unless under very lucky circumstances. Hence a phase jump must result. The 

A 

4- x’ 

FIGURE 3. Sketch illustrating effects of amplitude dispersion and frequency dispersion at 
small time: (a) initial profile A 05 z’, W = 0; ( b )  amplitude dispersion - (a/&’) $A2 08. d; 
(c )  frequency dispersion 

+P- EA 1 A , ,  
ax’ 

arrows show direction of energy flux. 
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precise behaviour in this region should in principle be treated by using a better 
approximation involving still higher derivatives. However, since this is a region 
of essentially no motion, in contrast with the breaking crest of a shallow water 
wave, a refined treatment of this local singularity is unlikely to alter the overall 
picture drastically. Although further development of the side groups has not been 
computed here, it is reasonable to expect that they undergo a similar process of 
disintegration and stabilization. We stress that since these permanent envelopes 
propagate a t  the original group velocity whatever the amplitude, the larger 
groups have no means of escaping or overtaking the smaller ones; this feature is 
quite different from shallow water waves under similar initial conditions (see 
Gardner et al. 1967, Madsen & Mei 1969). 

6. Periodic modulation of Stokes waves 
As some of the conclusions by Benjamin & Peir (1967) on the initial instability 

are needed here, we find it convenient to present a very short derivation. For small 
disturbances the linearized equations (2.6) apply. If a side-band disturbance of 
the kind (a, p)  = (a, B )  exp { ~ ( K X '  - Qt')) is assumed, the eigenvalue condition 
gives i2 = + K ( K ~  - €94; thus K < 2* for instability. From this the growth rate is 
found to be q / a  = = &~(8 - K ~ ) * .  The maximum growth rate occurs when 
K = 2 for which 

aY/a = ptBt./p = Q and alp = i. (6.1) 

X' 

FIGURE 4. Evolution of an unstable Stokes wave (initial conditions: A = 1 + (0.1) COB 2x', 
W = (0.1) sin 22' at d = 0.) A d  = ?r/lOO, At' = 0-001, N = 100. x x x , 0 0 0, perma- 
nent periodic envelopes; (a) amplitude A ;  ( b )  wave-number spread W ;  (c) growth rate of 
crest or trough (-), of net amplitude between crest and trough (-). 
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1 da 
a dt' 
_ _  

I I 1 I I 
0 1 2 3 4 5 

t' 

FIGURE 4 ( b ) ,  (c). For legend see previous page. 

We now consider the non-linear problem and select the initial modulation to 
correspond to the maximum growth rate. Noting that 62 and Bare out of phase by 
&r we select 

A = 1 + 0.1 cos Zx', W = 0.1 sin 2x'. 

The numerical results are given in figures 4 (a),  ( b )  and (c). Initially as the envelope 
amplifies, the crest and the trough (the latter is defined here as the midpoint 
between two successive initial crests) grow at different rates (figure 4fc)). The 
growth rate of the wave height between the crest and trough is, of course, 8. 
After a certain time nodes are formed with separated groups settling down to 
permanent forms of different dimensions. Wave-number peaks and phase jumps 
appear near the nodes. These groups again propagate at  the same speed, as each 
is a cnoidal wave of type ( b )  in figure 1. 

(6.2) 
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7. Discussion of Feir’s pulse experiment 
Measured results were published by Feir for the situation studied in $5. In  

particular, time records of six pulses, taken at 4ft. and Z8ft. from the wave- 
maker, are available for increasingly sharp initial envelopes (Feir 1967, figure 3). 
Although all the envelopes generated a t  the wave-maker are symmetrical and 
the frequency constant, the steeper ones have already become forward-leaning 
at  4ft., due perhaps to  the fact that the amplitude dispersion has longer time to 
manifest itself in the front of the pulse than in the lee. Separation into groups is 
evident in five of the six records. Two aspects in these experiments need to be 
pointed out before attempting quantitative comparison with the theory. 

First, although the physical distance between two measuring stations is the 
same for all runs (24ft.), due to the difference of initial amplitudes, the down- 
stream records actually correspond to different stages of development. This is 
made clear by considering the dimensionless time between the passage of pulse 
peak at  the 4ft .  and the 28ft. stations, i.e. 

(7.1) 

where the maximum amplitude at the 4ft. station is taken as a. Since Tj and 5 are 
the same in all runs, larger initial Z corresponds to larger values of tiB, and hence 
later stages of evolution; these values are listed in table 1 in the same sequence as 
appeared in the original paper. 

Second, viscous effects in all cases are significant, resulting in the loss of nearly 
one-half of the total energy, which Feir (private communication) ascribed to be 
partly due to the side-wall boundary layers and partly due to free-surface con- 
tamination. Now the degree of contamination is hard to assess for theoretical 
purposes, we shall only deal with the problem of viscous damping empirically as 
follows. 

We define a damping coefficient, assumed constant, by comparing the energy 
loss between two given stations; this is done by modifying the energy equation 
( 2 . 3 ~ )  (omitting the order symbol 8 ) :  

tis, = (&)~, (ZG/q)  (28 - 4)) 

At a fixed x, we integrate the preceding equation with respect to t over ( - 00,co) 
using the fact that a(x, k co) = 0 for pulse experiments we have 

m d C -ET = - a*ET, ET = a2dt. 
gax ---OD 

Integrating from xo to x1 we have 

In dimensionless form (7.2) becomes 

(7.4) 
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u = a*/G(&a)? (7.5) 

The values of u for all runs are computed from the published records by taking 
xo = 4 ft., x1 = 28 ft. measured from the wave-maker, and are also listed in table 1. 
Thus the percentage energy damped per unit time (scale N (~(Ia)~)- l )  is more 
severe in cases of smaller initial amplitude. 

Run (Ez)4* ( m 8 ,  tk?’ U 

1 0.064 0.034 1 *5 0.562 
2 0.098 0.068 3.5 0.193 
3 0.114 0.084 4.8 0.158 
4 0.151 0.108 8.4 0.088 
5 0.207 0.132 15.8 0.061 
6 0.227 0.173 19.0 0.043 

TABLE 1. Important parameters in Feir’s experiment 

We have replotted Feir’s records ~ ( t )  in dimensionless variables A(x’) using the 
relation between x’ and t for fixed x (cf. (2.4)). For comparison a solitary envelope 
of equal Am,,, i.e. A/Am,x = sech 24Amaxx’, is superimposed on the main 
pulse at  both stations. For runs 1, 2 and 3 where the envelopes are roughly 
symmetrical, the damping is strong and the duration of evolution is short, the 
dominant feature is an attenuation in amplitude. The pulse profile of run 1 is 
somewhat sharper than the comparison pulse of permanent form a t  4ft. and of 
course remains so at  28 ft., after relatively the shortest travel time. The profiles of 

A 

2’ 

FIGURE 5. Dimensionless plot of run 3 (Feir 1967). x x x ,  measured envelope; - - -, 
permanent pulse of equal height. (a)  1’ = 0,  corresponding to probe at 4 feet from wave- 
maker; (6) t’ = 4.8, corresponding to probe a t  28 ft. from wave-maker. 



The non-linear evolution of Stokes waves 349 

runs 2 and 3 are essentially of permanent form at 4ft.; but they also become 
sharper than the comparison profiles a t  28ft., as illustrated by figures 5 (a) and (b )  
for run 3. This is simply a manifestation of the dominating influence of damping 
at  small time, in particular, (l/A)aA/at‘ z - cr from (7.4). Now since cr should be 
approximately uniform in 5 for small time, a permanent pulse of maximum 
amplitude A, at the upstream station will decay to 

A,  z cA,sech (21Aox’) 

downstream, where c = 1 -AA/A, 
permanent pulse is given by 

constant < 1. However, the comparison 

A; = cA,sech(ZtcA,z’). 

Clearly, since c < 1, we must have A,/A; < 1 for all 5‘ with equality for z‘ = 0 
only. 

1 .o I I I I I 1 I I I 1 

A 

X‘ 

FIGURE 6. Comparison between measured and computed envelope for run 4 (Feir 1967). 
x x x , measured envelope; - - -, permanent pulse of equal height; - , computed 
envelope with damping. Ax’ = 0.1, At’ = 0.01. 

Runs 4,5 and 6 are decidedly asymmetrical with the front close to, but the 
back flatter than, a solitary envelope (see figure 6 for run 4). Due to relatively low 
damping and long time of evolution in each run the main pulse at  28 ft. is approxi- 
mately a solitary envelope, in qualitative agreement with calculations based on 
zero damping (Q 5) .  Furthermore, the presence of separated pulses is certain only 
in the lee, and not on both sides of the main pulse. This is likely the combined 
consequence of (i) some wave-number variation at the initial station a t  4ft., and 
(ii) side-wall boundary layers and surface contamination. The first cause can in 
principle be checked by solving (2.3a, b )  for a genuine initial-boundary-value 
problem accounting for the motion of the wave-maker; this, however, demands 
significant modification of numerical work. A simpler alternative would be to 
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infer the wave-number variation from analysis of experimental data, which is 
not available at present. According to a linearized theory for two-dimensional 
waves (Hunt 1964), the bottom boundary layer affects the real and the imaginary 
parts of the dispersion relation at  the order O(k6) ,  i.e. 

w,/wo = 1 - 4kS/2 sinh 2kh + O(k6)3, 
( 7 . 6 ~ )  b )  

where wo = (gk tanhkh)), 6 = (2v /w, ) t ,  and k real. The side walls, being rigid as 
the bottom, are likely to exert a similar influence with the coefficients in (7.6a, b ) ,  
( - 2 sinh 2kh)-l, replaced by some functions depending on kb ( b  = tank width). 
This is indeed so for wi/wo ( N damping rate) (Hunt 1952): 

1 W J O ~  = - k6j2 sinh 2kh + O(k6)2, 

Note, however, that the effect of the side walls is comparatively stronger 
(O(kb)-l)  than that of the bottom (O(e-2kh)) for large kb or kh. Now if w,/w,, is 
similarly influenced, a term of O(k&/kb) would not be totally negligible from (1 .4 )  
over a long distance or time, as the Stokes term ij(ka)2 is also smal1.t No theory on 
this or the surface contamination is yet known. 

In view of the above difficulties, we do not attempt a complete comparison 
between theory and experiment here. Instead an initial profile is chosen to fit the 
measured envelope and the initial wave-number is taken to be constant, i.e. 
W(x,  0) = 0. Calculations are then made on the bases of (7.4) and (2.5 b ) ,  i.e.viscous 
effect on energy, but not on phase, is considered. Figure 6 shows a typical result 
made for run 4. It is seen that the predicted values and experiment are in fairly 
good accord over the main group, though not over the side groups. The secondary 
group in the lee is larger than the one in front of the main group, in qualitative 
agreement with the observations. 

Decisive checks may be made by further reduction of viscous effects in larger 
tanks. Nevertheless, the evidence discussed so far is strongly in favour of the 
present theory in which the envelope remains dispersive as its constituent waves. 

We wish to express our sincere thanks to Dr C. J. R. Garrett for several percep- 
tive comments and suggestions on an earlier draft of this paper. The financial 
support by the Coastal Engineering Research Centre, U.S. Army Corps of Engi- 
neers (Contract DACW 72-68-c-0012) is also gratefully acknowledged. 
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